Geometric Mean based Boosting Algorithm to Resolve Data Imbalance Problem

نویسندگان

  • Myoung-Jong Kim
  • Dae-Ki Kang
چکیده

In classification or prediction tasks, data imbalance problem is frequently observed when most of samples belong to one majority class. Data imbalance problem has received a lot of attention in machine learning community because it is one of the causes that degrade the performance of classifiers or predictors. In this paper, we propose geometric mean based boosting algorithm (GMBoost) to resolve the data imbalance problem. GM-Boost enables learning with consideration of both majority and minority classes because it uses the geometric mean of both classes in error rate and accuracy calculation. We have applied GM-Boost to bankruptcy prediction task. The results indicate that GM-Boost has the advantages of high prediction power and robust learning capability in imbalanced data as well as balanced data distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction

In classification or prediction tasks, data imbalance problem is frequently observed when most of instances belong to one majority class. Data imbalance problem has received considerable attention in machine learning community because it is one of the main causes that degrade the performance of classifiers or predictors. In this paper, we propose geometric mean based boosting algorithm (GMBoost...

متن کامل

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater in...

متن کامل

Building Useful Models from Imbalanced Data with Sampling and Boosting

Building useful classification models can be a challenging endeavor, especially when training data is imbalanced. Class imbalance presents a problem when traditional classification algorithms are applied. These algorithms often attempt to build models with the goal of maximizing overall classification accuracy. While such a model may be very accurate, it is often not very useful. Consider the d...

متن کامل

ارائه یک روش فازی-تکاملی برای تشخیص خطاهای نرم‌افزار

Software defects detection is one of the most important challenges of software development and it is the most prohibitive process in software development. The early detection of fault-prone modules helps software project managers to allocate the limited cost, time, and effort of developers for testing the defect-prone modules more intensively.  In this paper, according to the importance of soft...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013